
A simplified approach to non-collinear magnetism in amorphous transition metals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 8683

(http://iopscience.iop.org/0953-8984/12/40/312)

Download details:

IP Address: 171.66.16.221

The article was downloaded on 16/05/2010 at 06:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) 8683–8704. Printed in the UK PII: S0953-8984(00)15677-2

A simplified approach to non-collinear magnetism in
amorphous transition metals

Y Kakehashi and T Uchida
Hokkaido Institute of Technology, Maeda, Teine-ku, Sapporo 006, Japan

Received 20 July 2000

Abstract. A theory of non-collinear magnetism in structurally disordered metals is presented on
the basis of the Gaussian model for the distribution of the interatomic distance and the saddle-point
approximation to the integral equation for the distribution of local magnetic moments. Simple self-
consistent equations for the local moments, which significantly reduce the numerical calculations,
are obtained. Magnetization and the spin-glass order parameters are calculated as a function of
the d-electron occupation number N and temperature. It is shown that the theory describes the
transition from the ferromagnetism to the non-collinear spin glass with decreasing N , which is
expected experimentally. The calculated magnetic phase diagram is shown to be consistent with
previous results based on the Monte Carlo sampling method as well as the recent experimental data
on the quasi-binary amorphous Fe–Mn alloys.

1. Introduction

Structurally disordered metals and alloys often display magnetic properties which are quite
different from their crystalline counterparts [1–3]. Iron-rich amorphous alloys are a typical
example showing a drastic change of magnetism; the Curie temperatures rapidly decrease
with increasing Fe concentration and the spin-glass phase (SG) appears beyond 90 at% Fe
after complete disappearance of the ferromagnetism (F) [4, 5]. Since the experimental SG
temperatures (Tg) beyond 90 at% Fe are approximately constant (≈110 K) irrespective of the
second elements, the SG is considered to be inherent in the amorphous pure Fe.

The theory which explains the SG in amorphous Fe was first proposed by Kakehashi [6].
He constructed a finite temperature theory of amorphous metallic magnetism on the basis of
the two-fields functional integral technique to the degenerate-band Hubbard model [7] and
the distribution function method to treat the structural disorder of local moments (LM) [8].
Solving the self-consistent equations for the magnetization and the SG order parameter, he
obtained the SG around the d-electron number N = 7.0 (i.e. amorphous Fe), which is caused
by the nonlinear magnetic couplings between Fe LM and the local environment effects on the
amplitudes of Fe LMs. The volume dependence of the SG state and the influence of the degree
of structural disorder on the magnetic phase diagram were investigated in [9, 10].

The ground-state calculations [11–14] for amorphous Fe reported the ferromagnetism at
the early stage of their investigations. Later, the non-collinear ground-state calculations sug-
gested the possibility of the SG in amorphous Fe. Krey et al [15] obtained two self-consistent
solutions with magnetization 1.17µB and 0.2µB which are almost degenerate in energy, using
the tight-binding supercell method with 54 atoms. Lorentz et al [16] performed detailed non-
collinear calculations based on the self-consistent LMTO recursion method with 1728 atoms
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in a cluster, and found that the ground-state magnetization decreases up to 0.5 µB with the
SG-like random LM configuration. More recent non-collinear calculations by Liebs et al [17]
with use of the LMTO supercell method with 32 Fe atoms in a unit cell showed that even the
zero magnetic moment state (i.e. the SG) can become the ground state for amorphous Fe.

With the development of the ground-state theory, it has been desired to construct the
non-collinear theory at finite temperatures. We proposed recently such a theory, extending
the collinear theory of amorphous metallic magnetism to the non-collinear case [18]. We
demonstrated using the non-collinear theory that the isotropic spin glass with the SG
temperature being comparable with the experimental ones is realized in the vicinity of
amorphous Fe as a function of the d-electron number. The non-collinear theory, however, uses
the Monte Carlo sampling technique to treat a huge number of spin and structural configurations
of surrounding atoms and LMs. The method requires a large amount of computing time for
accurate calculations of the magnetization and the SG order parameters. Therefore it is not easy
to obtain accurately the details of the magnetic phase diagram, to obtain the susceptibilities by
taking the numerical derivative of the magnetization, and to apply the theory to more complex
systems.

In the present paper, we propose an alternative theory which is more analytic and reduces
the numerical calculations significantly. The difficulty in our previous theory was how to treat
the 4z-fold integrals in the integral equation for the distribution function of LMs. Here z is
the number of nearest neighbours. We adopted in our previous paper [18] the decoupling
approximation and the Monte Carlo sampling method to treat a large number of spin and
structural configurations. In the present paper, we assume the Gaussian distribution with the
width σ for the interatomic distance and perform the z-fold integrals analytically using the
saddle point approximation which is exact in the large z/σ 2 limit, so that we can reduce the
4z-fold integral equation into the self-consistent equations for the magnetization and the SG
order parameters with only 64 effective configurations.

In section 2.1, we present the basic expressions in the non-collinear theory of amorphous
metallic magnetism. The microscopic expression of the LMs and the integral equation for
the LM distribution will be presented there. In section 2.2, the Gaussian distribution for the
interatomic distance will be introduced. It is shown that the central LM can be regarded as a
function of the linear combinations of the deviations of the interatomic distances from their
average value, so that the z-fold integrals in the kernel of the integral equation are performed
analytically with use of the saddle point approximation. The remaining 3z-fold integrals
equation is transformed into a simplified self-consistent equation for the magnetization and
the SG order parameter in section 2.3. In section 3, the numerical results for amorphous
transition metals are presented to show the reliability and simplicity of the present theory. It
is shown that an overall feature of the magnetic phase diagram is consistent with the previous
results based on the Monte Carlo sampling method. The results are compared with recent
experimental data on quasi-binary Y20(Mn1−xFex)80 amorphous alloys. The last section is
devoted to the summary of the present theory.

2. Formulation

2.1. Non-collinear theory of amorphous metallic magnetism

We start from the D-fold degenerate-band Hamiltonian with the intra-atomic Coulomb (Ui)
and exchange (Ji) interactions as

H =
∑
iνσ

ε0
i n̂iνσ +

∑
ijνσ

tij a
†
iνσ ajνσ +

1

4

∑
i

Ui n̂
2
i −

∑
i

JiŜ
2
i . (1)
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Here ε0
i and tij are the atomic level on site i and the transfer integral between sites i and j ,

respectively. a†
iνσ (aiνσ ) is the creation (annihilation) operator for an electron with spin σ and

orbital ν on site i, n̂iνσ = a
†
iνσ aiνσ is the number operator of electrons on site i, orbital ν, and

spin σ . Furthermore, n̂i and Ŝi denote the charge and spin density operators on site i, which
are defined by n̂i = ∑

νσ n̂iνσ , and Ŝi = ∑
νσσ ′ a

†
iνσ (σ)σσ ′aiνσ ′/2 with use of the Pauli spin

matrices σ, respectively.
After introducing the locally rotated coordinates into the intra-atomic interaction at each

site in (1), we adopt the functional integral technique [7]. The method transforms the interacting
Hamiltonian H into a one-electron Hamiltonian with time-dependent random charge and
exchange fictitious fields acting on each site i. By making use of the static approximation,
we obtain the expression of the local moment (LM) on site 0, which reduces to that of the
generalized Hartree–Fock approximation at the ground state [19]

〈m0〉 =
∫

[
∏

j dξj ξ
−2
j ](1 + 4

βJ̃0ξ
2
0
)ξ0 e−βE(ξ)∫

[
∏

j dξj ξ
−2
j ] e−βE(ξ) (2)

E(ξ) =
∫

dω f (ω)
1

π
Im Tr ln(L−1 − t)−

∑
i

Niwi(ξ) +
∑
i

1

4
J̃iξ

2
i . (3)

Here J̃i = Ui/2D + (1 + 1/2D)Ji is the effective exchange energy parameter, f (ω) is the
Fermi distribution function, (t)iνσjν ′σ ′ = tij δνν ′δσσ ′ , Ni is the neutral charge on site i, and wi

is the charge potential on the same site. The locator matrix L is defined by

(L−1)iνσjν ′σ ′ = (ω + iδ − ε0
i + µ− wi(ξ))δij δνν ′δσσ ′ + 1

2 J̃iξi · (σ)σσ ′δij δνν ′ (4)

δ being the infinitesimal positive number, and µ being the chemical potential.
In what follows, we consider the amorphous metallic system. There are two kinds of

disorder in this system; one is the diagonal disorder in L which is mainly caused by the
thermal spin fluctuations, and the other is the off-diagonal disorder in t due to the fluctuation
of the interatomic distance R. Since the amorphous metals and alloys form the well-defined
nearest-neighbour (NN) shell [20], we treat the local environment effects due to the atoms and
LMs on the NN shell directly, and describe the structural disorder outside the shell by means of
the effective self-energy Sσ and the thermal spin fluctuations by means of the effective locator
Lσ .

Let us introduce the inverse effective locator L−1
σ into the first term at the right-hand side

(rhs) of (3) to describe the diagonal disorder as an average and expand the deviation with
respect to the sites. We can then rewrite the energy (3) in the form

E(ξ) =
∫

dω f (ω)
1

π
Im Tr ln(L−1 − t)F +

∑
i

Ei(ξi ) + !E(ξ). (5)

Here the coherent Green function F is defined by

Fiσjσ ′ = [(L−1 − t)]iσ iσ δij δσσ ′ . (6)

The first term on the rhs of equation (5) is the zeroth-order term which is described by
the effective medium only. This term could be dropped from the expression of energy, since
it does not play any role in the thermal average. The second term is the first-order correction
consisting of the sum of the single-site energy Ei(ξi ). It is given by

Ei(ξi ) =
∫

dω f (ω)
D

π
Im ln det(L−1

i − L−1 + F−1)−Niwi(ξ) +
1

4
J̃iξ

2
i (7)

where

L−1
i = ω + iδ − ε0

i + µ− wi(ξ) + 1
2 J̃iξi · σ. (8)
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The third term at the rhs of equation (5) is the higher-order correction. !E(ξ) reduces
to
∑

(i,j) #ij (ξi , ξj ) in the pair approximation and all the higher-order terms are neglected by
assuming small deviation from the effective medium. The pair energy functional #ij (ξi , ξj )

between sites i and j is given by

#ij (ξi , ξj ) =
∫

dω f (ω)
D

π
Im Tr(ij)[ln(1 + t̃F ′)]. (9)

Here Tr(ij) denotes the trace over the subspace of sites i and j , the off-diagonal coherent Green
function is defined by

F ′
iσjσ ′ = [(L−1 − t)]iσjσ (1 − δij )δσσ ′ (10)

and t̃ is the single-site t matrix defined by

t̃ = [1 + (L−1 − L−1)F ]−1(L−1 − L−1). (11)

Equation (2) is then written as

〈m0〉 =
∫

dξ0 ξ
−2
0 (1 + 4/βJ̃0ξ

2
0 )ξ0 e−βE0(ξ0)〈exp(−β∑(i,j) #ij (ξi , ξj ))〉′0∫

dξ0 ξ
−2
0 e−βE0(ξ0)〈exp(−β∑(i,j) #ij (ξi , ξj ))〉′0

. (12)

Here the average 〈(∼)〉′0 is defined by

〈(∼)〉′0 =
∫ [ N−1∏

i=1

pi(ξi ) dξi ξ
−2
i

]
(∼) (13)

and pi(ξi ) is the probability density for the single site energy Ei(ξi ),

pi(ξi ) = e−βEi(ξi )∫
dξi ξ

−2
i e−βEi(ξi )

. (14)

In the next step, we adopt in (12) the following decoupling approximation for arbitrary
function f , which is correct up to the second moment:

〈f (ξi )〉0 ≡
∫

dξi pi(ξi )f (ξi ) (15)

=
∑
si

1

8

(
1 +

〈ξiz〉0

aiz
siz

)
f ({siαaiα}) (16)

where
∑

si
= ∑

six=±1

∑
siy=±1

∑
siz=±1 and aiα = 〈ξ 2

iα〉1/2
0 .

Taking the same steps as in [21], we reach

〈m0〉 =
∫

dξ0 ξ
−2
0

∑
{si }(1 + 4/βJ̃0ξ

2
0 )ξ0 e−β((ξ0,{siαaiα})∫

dξ0 ξ
−2
0

∑
{si } e−β((ξ0,{siαaiα})

(17)

where

((ξ, {siαaiα}) = E0(ξ)− β−1
∑
i

siz tanh−1 〈ξiz〉0

aiz
+ !E(ξ, {siαaiα}) (18)

!E(ξ, {siαaiα}) =
∑
i �=0

#
(a)
0i (ξ)−

∑
i �=0

∑
α=x,y,z

[
#
(e)
0jα(ξ) +

∑
j �=0,i

Kijα

]
siα

+
∑
i �=0

∑
(α,γ )

′
#
(b)
0jβ(ξ)siαsiγ +

∑
(ij)

′ 1

64

∑
µiµj

#ij ({µiαaiα}, {µjαajα})

−
∑
(iα,jγ )

′Jijβsiαsjγ +
∑

(iα,jβ,kγ )

′
[#(c)

0i (ξ)δij δjk + F (β,γ,α)

ij δjk

+F (γ,α,β)

jk δki + F (α,β,γ )

ki δij ]siαsjβskγ + · · · . (19)
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In (17), siα takes a value +1 or −1, and
∑

{si } denote the sum over s1, s2, · · ·. ∑′
(α,γ )

in (19) means a summation over all the cyclic pairs of x, y and z.
∑′

(iα,jγ )(
∑′

(iα,jβ,kγ ))

denotes a summation over all the pairs (triplets) of sites and components with i �= j and
α �= γ (i �= j �= k and α �= β �= γ ) which are not related to site 0. The pair interactions
#
(a)
0i (ξ),#

(e)
0iα(ξ),#

(b)
0jα(ξ),#

(c)
0i (ξ),Kijα,Jijβ , and Fij are defined, respectively as follows.

#
(a)
0j (ξ) = 1

8

∑
µj

#0j (ξ, {µjαajα}) (20)

#
(e)
0jα(ξ) = −1

8

∑
µj

µjα#0j (ξ, {µjγ ajγ }) (21)

#
(b)
0jβ(ξ) = 1

8

∑
µj

µjαµjγ#0j (ξ, {µjδajδ}) (22)

#
(c)
0j (ξ) = 1

8

∑
µj

µjxµjyµjz#0j (ξ, {µjαajα}) (23)

Kijα = 1

64

∑
µi

∑
µj

µiα#ij ({µiβaiβ}, {µjγ ajγ }) (24)

Jijβ = 1

64

∑
µi

∑
µj

µiαµjγ#ij ({µiλaiλ}, {µjδajδ}) (25)

F (α,β,γ )

ki = 1

64

∑
µi

∑
µk

µiαµjβµkγ#ik({µiδaiδ}, {µkνakν}). (26)

In the following, we make a molecular-field approximation for the thermal averages of
LMs on the NN shell. The variables siα, siαsjγ , siαsjβskγ in (19) are replaced by their thermal
averages.

〈m0〉 =
∫

dξ ξ−2(1 + 4/βJ̃ ξ 2)ξ e−β((ξ)∫
dξ ξ−2 e−β((ξ) (27)

((ξ) = E0(ξ) +
z∑

j �=0

[
#
(a)
0j (ξ)−

∑
α

#
(e)
0jα(ξ)

〈mjα〉
ãjα

+
∑
(αγ )

#
(b)
0jδ(ξ)

〈mjα〉
ãjα

〈mjγ 〉
ãjγ

+#(c)
0j (ξ)

〈mjx〉
ãjx

〈mjy〉
ãjy

〈mjz〉
ãjz

]
. (28)

Here
∑

α(
∑

(αγ )) denotes the sum over x, y, z components ((yz), (zx), (xy) pairs). ãjα =
(1 + 4/βJ̃j 〈ξ 2

j 〉0)〈ξ 2
jα〉1/2

0 , 〈 〉0 being the thermal average with respect to the single-site energy
on site j .

The final expression of the single-site energy E0(ξ) in (28) is given by

E0(ξ) =
∫

dω f (ω)
D

π
Im ln[(δL−1

0↑ + F−1
00↑)(δL

−1
0↓ + F−1

00↓)− 1
4 J̃

2
0 ξ

2
⊥] −N0w0(ξ) + 1

4 J̃0ξ
2

(29)

where

δL−1
jσ = (L−1)jνσjνσ − L−1

σ (30)

and

ξ 2
⊥ = ξ 2

x + ξ 2
y . (31)
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The pair energies#(a)
0j (ξ),#

(e)
0jα(ξ),#

(b)
0jδ(ξ), and#(c)

0j (ξ) are calculated via (20)–(23) from
#0j

(
ξ, ξj

)
, which is given by

#0j (ξ, ξj ) =
∫

dω f (ω)
D

π
Im ln

[
1 −

∑
σ

(t̃0)σσF
′
0jσF

′
j0σ (t̃j )σσ

−F ′
0j↑F

′
j0↓

J̃0J̃j

2R̃02R̃j
(ξ+ξj− + ξ−ξj+)

+(F ′
0j↑F

′
j0↓)

2

{
(t̃0)↑↑(t̃0)↓↓ − J̃ 2

0 ξ
2
⊥

4R̃2
0

}{
(t̃j )↑↑(t̃j )↓↓ − J̃ 2

j ξ
2
j⊥

4R̃2
j

}]
. (32)

Here ξj± = ξjx ± iξjy , (t̃j )σσ ′ is the single-site t matrix whose diagonal component is given
by

(t̃j )σσ = δL−1
jσ + (δL−1

j↑ δL
−1
j↓ − 1

4 J̃
2
j ξ

2
j⊥)Fσ

R̃j
(33)

R̃j = (1 + δL−1
j↑F↑)(1 + δL−1

j↓F↓)− 1
4 J̃

2
j ξ

2
j⊥F↑F↓. (34)

(t̃0)σσ and R̃0 are defined in the same way, but Fσ has been replaced by F00σ in equations
(33) and (34).

The coherent Green functions F00σ , F ′
0jσ , and Fσ (=[(L−1

σ − t)−1]jσjσ ) in (29), (32)–(34)
are given in the Bethe approximation as

F00σ = (L−1
σ − θKσ )

−1 (35)

F ′
0jσ = t0jKσF00σ (36)

and

Fσ =
∫

[ρ(ε)]s dε

L−1
σ − ε

. (37)

Here θ = ∑z
j=1 t

2
j0, Kσ = (L−1

σ − Sσ )−1 and [ρ(ε)]s is the structural average of the
noninteracting density of states (DOS) for {tij }. Note that the transfer integral tj0 depends
on the interatomic distance Rj between sites 0 and j ; tj0 = tj0(Rj ). The self-energy Kσ (or
Sσ ) is determined from the condition that

[(L−1
σ − θKσ )

−1]s = Fσ . (38)

Here [ ]s denotes the structural average.
Equation (27) manifests that the central LM is determined by the coordination number z

on the NN shell, the interatomic distances {Rj } between the central and neighbouring atoms,
the LMs {〈mj 〉} on the NN shell, when the two kinds of effective media L−1

σ and Kσ are
given. These variables randomly change in amorphous metals. We therefore introduce the
distribution function p(z) which is the probability of finding a coordination number z, the
probability g(m) dm of finding 〈mj 〉 between m and m + dm, and the probability ps(R) dR
of finding a neighbouring atom at the distance between R and R + dR. The distribution of
the central LM is then given via (27) as follows since the distribution of the central LM is
equivalent to those of the neighbouring ones [6, 8].

g(M) =
∑
z

p(z)

∫
δ(M − 〈m0〉)

z∏
j=1

[g(mj ) dmj ps(Rj ) dRj ]. (39)

We adopt in this paper the simplest form of p(z) given by

p(z) = ([z∗] + 1 − z∗)δz[z∗] + (z∗ − [z∗])δz[z∗]+1. (40)
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Here z∗ is the average coordination number, [ ] denotes the Gauss’s notation.
The above equation (39) forms the 4z − 1 fold integral equation for the distribution

function g(m). In our previous theory [6, 18], we introduced the distribution p′
s(yj ) for the

square of the transfer integral yj = t20j (Rj ) instead of that of the distance, and adopted the
decoupling approximation to all the distributions at the rhs of (39), which corresponds to the
two-delta approximation, e.g. p′

s(y) ≈ [δ(y + [(δy)2]1/2
s )+ δ(y− [(δy)2]1/2

s )]/2. The resulting
configurations at the rhs of (39) were of the order of 107, therefore we estimated the rhs by
means of the Monte Carlo sampling technique.

Although the method is useful for drawing the magnetic phase diagram and calculating
the distribution of LMs, it is time-consuming when we increase the accuracy. To avoid the
difficulty, we propose in the following subsection an alternative method which allows us to
integrate the rhs of (39) over the variables {Rj }.

2.2. Gaussian distribution for the interatomic distance and saddle-point approximation

We adopt the Gaussian distribution for the probability of finding a neighbouring atom at R

ps(R) = 1√
2πσ 2

e−(R−R0)
2/2σ 2

. (41)

Here σ (R0) denotes the width (average distance).
The distribution is much more reasonable when compared with the two-delta distribution

adopted in the previous theory, as found in the radial distribution function in x-ray diffraction
experiments [22]. It should be noted that the form (41) does not vanish at R = 0. It does not,
however, introduce any difficulty since σ � R0 in amorphous system. In the following, we
extend the range of integrations for (41) from [0,∞] to [−∞,∞] assuming σ � R0.

The energy ((ξ) in (28) is regarded as the function of θ and {xj = Rj − R0} because
of (35) and (36); ((ξ) = ((ξ, θ, {xj }). In fact, one can assume [23] that tj0 = t (Rj ) =
t (R0)(R0/Rj )

κ (κ ≈ 3.8), and therefore t2j0 and θ are expanded as follows.

t2j0(Rj ) = t (R0)
2

(
xj + R0

R0

)−2κ

(42)

θ = zt (R0)
2

[
1 − 2κ

R0
u +

κ(2κ + 1)

R2
0

v

]
(43)

where

u = 1

z

z∑
i=1

xi (44)

v = 1

z

z∑
i=1

x2
i . (45)

Therefore, one can expand ((ξ, θ, {xj }) with respect to {xj } as

((ξ, θ, {xj }) = ((ξ, θ, 0) + z#(a)
1 (ξ, θ, 0)u−

∑
α

z#
(e)
α1 (ξ, θ, 0)uα +

∑
(αγ )

z#
(b)
δ1 (ξ, θ, 0)uαγ

+z#(c)
1 (ξ, θ, 0) uxyz +

1

2
z#

(a)
2 (ξ, θ, 0)v −

∑
α

1

2
z#

(e)
α2 (ξ, θ, 0)vα

+
∑
(αγ )

1

2
z#

(b)
δ2 (ξ, θ, 0)vαγ +

1

2
z#

(c)
2 (ξ, θ, 0)vxyz. (46)
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Here #
(a)
1 (ξ, θ, 0), #(e)

α1 (ξ, θ, 0), #(b)
δ1 (ξ, θ, 0) and #

(c)
1 (ξ, θ, 0) are the first derivatives of

#
(a)
0j (ξ, θ, xj ), #

(e)
0jα(ξ, θ, xj ), #

(b)
0jδ(ξ, θ, xj ), and #(c)

0j (ξ, θ, xj ) with respect to xj at xj = 0.

#
(a)
2 (ξ, θ, 0), #(e)

α2 (ξ, θ, 0), #(b)
δ2 (ξ, θ, 0) and #

(c)
2 (ξ, θ, 0) are the second derivatives of the

same pair energies. uα , uαγ , uxyz, vα , vαγ , and vxyz are defined by

uα = 1

z

∑
j

〈mjα〉
ãjα

xj (47)

uαγ = 1

z

∑
j

〈mjα〉〈mjγ 〉
ãjαãjγ

xj (48)

uxyz = 1

z

∑
j

〈mjx〉〈mjy〉〈mjz〉
ãjx ãjy ãjz

xj (49)

vα = 1

z

∑
j

〈mjα〉
ãjα

x2
j (50)

vαγ = 1

z

∑
j

〈mjα〉〈mjγ 〉
ãjαãjγ

x2
j (51)

vxyz = 1

z

∑
j

〈mjx〉〈mjy〉〈mjz〉
ãjx ãjy ãjz

x2
j . (52)

Equations (43) and (46) show that 〈m0〉 is a function of {u, uα, uαγ , uxyz} and {v, vα, vαγ , vxyz}
; 〈m0〉 = 〈m0〉({u}{v}).

We can now write the kernel of the integral equation (39) as

K(M , z, {mj }) ≡
∫
δ(M − 〈m0〉)

[ z∏
j=1

ps(Rj ) dRj

]
=
∫

dqK(q) (53)

K(q) =
∫ [ z∏

j=1

dxj

]
1

(
√

2πσ)z
exp

(
− 1

2σ 2

z∑
i=1

x2
i − φ ({u}, {v})

)
(54)

φ({u}, {v}) = 2π iq · (M − 〈m0〉({u}, {v})). (55)

Here {ui} ({vi}) (i = 1, 2, . . . , 8) stands for a set of variables u, ux, uy, uz, uyz, uzx, uxy and
uxyz (v, vx, vy, vz, vyz, vzx, vxy and vxyz).

Since ui and vi are the linear combinations of the Gaussian variables {xj } (or {x2
j }), their

fluctuations may be suppressed in the large z/σ 2 limit. We adopt therefore the saddle-point
approximation for the evaluation of the integral (54) assuming large z/2σ 2. Using the identities
such as

∫
du δ(u− z−1∑

i xi) = 1, K(q) is expressed as follows.

K(q) =
∫ [ 8∏

i=1

dui

][ 8∏
i=1

dvi

]
exp[−φ({u}, {v})− ψ({u}, {v})] (56)

exp[−ψ({u}, {v})] =
∫ [ z∏

j=1

dxj

][ 8∏
i=1

δ

(
ui − z−1

∑
j

cij xj

)
δ

(
vi − z−1

∑
j

cij x
2
j

)]

× 1

(
√

2πσ)z
exp

(
− 1

2σ 2

z∑
i=1

x2
i

)
. (57)

Here {cij } are the coefficients which appear at the rhs of (47)–(49) or (50)–(52).
The saddle-point evaluation of (56) yields

K(q) = exp[−φ({u}, {v})− ψ({u}, {v})]. (58)
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Here {ui} and {vi} are determined by
∂

∂ui
[φ({u}, {v}) + ψ({u}, {v})] = 0 (59)

∂

∂vi
[φ({u}, {v}) + ψ({u}, {v})] = 0. (60)

The function ψ({u}, {v}) is obtained from the following integral.

exp[−9({ζ }, {η})] =
∫ [ 8∏

i=1

dui dvi

]
exp

(
−
∑
i

ζiui −
∑
i

ηivi − ψ({u}, {v})
)
. (61)

The function9({ζ }, {η}) is a Gaussian integral as seen from (57) and (61), so that it is obtained
exactly as

9({ζ }, {η}) = −
z∑
i

β2
i

4αi
+

1

2

z∑
i

ln(2σ 2αi) (62)

αi = 1

2σ 2
+

1

z

∑
j

cjiηj (63)

βi = 1

z

∑
j

cjiζj . (64)

The saddle-point evaluation of 9 via (61), on the other hand, yields

9({ζ }, {η}) =
∑
i

ζiui +
∑
i

ηivi + ψ({u}, {v}) (65)

ζi +
∂

∂ui
ψ({u}, {v}) = 0 (66)

ηi +
∂

∂vi
ψ({u}, {v}) = 0. (67)

Note that {ζi} and {ηi} are chosen so that the saddle-point values {ui} and {vi} in (65)–(67)
agree with those in (58)–(60). Thus, {ui} and {vi} are connected to {ζi} and {ηi} as

ui({ζ }, {η}) = ∂

∂ζi
9({ζ }, {η})

= − 1

2z

∑
j

cijβj

αj
(68)

vi({ζ }, {η}) = ∂

∂ηi
9({ζ }, {η})

= 1

2z

∑
j

cij

αj

(
1 +

β2
j

2αj

)
. (69)

Moreover from (59) and (66) ((60) and (67)), we obtain

ζi = ∂

∂ui
φ({u}, {v})

= −2π iq · ∂〈m0〉({u}, {v})
∂ui

(70)

ηi = ∂

∂vi
φ({u}, {v})

= −2π iq · ∂〈m0〉({u}, {v})
∂vi

. (71)
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In summary, ψ({u}, {v}) in (58) is obtained from (65) and (62) as a Legendre transformation
of the Gauss-type generating function9. The parameters {u} and {v}, and their conjugate ones
{ζ } and {η} are determined self-consistently from (68)–(71).

In the limit σ 2/z → 0, the self-consistent equations (68)–(71) are easily solved as

ui = 0 (72)

vi = 〈vi〉 ≡ σ 2

z

( z∑
j=1

cij

)
(73)

ψ({u}, {v}) = 0. (74)

Here the bracket 〈 〉 in (73) denotes the average with respect to {xj }. We have then

K(q) = e−φ({0},{〈v〉}). (75)

This is the zeroth approximation in which the fluctuation of interatomic distance has completely
been neglected.

To obtain the higher-order correction, we solve the self-consistent equations (68)–(71)
expanding them with respect to σ 2/z. To the first order, we obtain

φ({u}, {v}) + ψ({u}, {v}) = φ({0}, {〈v〉})− σ 2

2z

[
1

z

z∑
j=1

( 8∑
i=1

cij
∂φ({0}, {〈v〉})

∂ui

)2]

−σ 4

z

[
1

z

z∑
j=1

( 8∑
i=1

cij
∂φ({0}, {〈v〉})

∂vi

)2]
+ · · · . (76)

Substituting (76) into (58), we reach

K(q) = exp

[
− π

(∑
αγ

qαAαγ qγ + q · b

)]
(77)

Aαγ = 2πσ 2

z

1

z

z∑
j=1

[( 8∑
i=1

cij
∂〈mα〉({0}, {〈v〉})

∂ui

)( 8∑
i=1

cij
∂〈mγ 〉({0}, {〈v〉})

∂ui

)

+2σ 2

( 8∑
i=1

cij
∂〈mα〉({0}, {〈v〉})

∂vi

)( 8∑
i=1

cij
∂〈mγ 〉({0}, {〈v〉})

∂vi

)]
(78)

b = 2i(M − 〈m0〉({0}, {〈v〉})). (79)

We adopt (77) in the following, and perform the integral in (53), so that the integral
equation (39) is expressed as follows.

g(M) =
∑
z

p(z)

∫
K(M , z, {mj })

z∏
j=1

[g(mj ) dmj ] (80)

K(M , z, {mj }) = 1√
detA

exp[−π(M − 〈m0〉({0}, {〈v〉}))A−1(M − 〈m0〉({0}, {〈v〉}))].
(81)

The above expression is quite reasonable in a sense that the δ-function δ(M − 〈m0〉) in (53)
has been changed into the Gaussian kernel K (equation (81)) due to the Gaussian fluctuations
of {Rj } (equation (41)).
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2.3. Decoupling approximation to the local-moment distribution

The distribution g(m) is expected to have the axial symmetry along the z-axis (≡ the direction
of magnetization). In this case, the following decoupling approximation is correct up to the
second-order moment.∫
X(m)g(m) dm

≈
∑

µxµyµz

1

8

(
1 + µz

[〈mz〉]s
[〈mz〉2]1/2

s

)
X(µx[〈mx〉2]1/2

s , µy[〈my〉2]1/2
s , µz[〈mz〉2]1/2

s ).

(82)

Here X(m) is an arbitrary function. µx, µy, and µz take the values ±1.
Adopting the decoupling approximation (82) at the right-hand side of equation (80), we

obtain

g(M) =
∑
z

p(z)
∑
{µj }

(
1

2

)3z z∏
j=1

(
1 + µjz

[〈mz〉]s
[〈mz〉2]1/2

s

)
K(M , z, {µjα[〈mα〉2]1/2

s }). (83)

Here µj = (µjx, µjy, µjz) and µjα = 1 or −1.
It should be noted that each µj has one of the 8 configurations ν̂1 = (1, 1, 1),

ν̂2 = (1, 1,−1), ν̂3 = (1,−1, 1), ν̂4 = (1,−1,−1), ν̂5 = (−1, 1, 1), ν̂6 = (−1, 1,−1),
ν̂7 = (−1,−1, 1) and ν̂8 = (−1,−1,−1). Moreover, K(M , z, {µjα[〈mα〉2]1/2

s }) is invariant
for the rearrangement of {µ1,µ2, · · · ,µz}. Therefore, (83) is expressed by a polynomial
distribution as follows

g(M) =
∑
z

p(z)
∑

z=∑8
n=1 kn

z!

[
∏8

n=1 kn!]

[ 8∏
n=1

qknn

]
K(M , z, {kl}). (84)

Here kn is the number of fictitious LMs {µi} on the NN shell, which have the configuration
ν̂n. (Note that

∑8
n=0 kn = z.) qn is defined by qxν̂nx qyν̂ny qzν̂nz , where qx± = qy± = 1/2,

qz± = (1 ± [〈mz〉]s/[〈mz〉2]1/2
s )/2 and ν̂n = (ν̂nx, ν̂ny, ν̂nz). K(M , z, {kl}) stands for

K(M , z, {µjα[〈mα〉2]1/2
s }) with configuration {kl}.

The first and second moments, [〈mα〉]s and [〈mα〉2]s which appear in (84) are obtained
from the following relation

[〈mα〉n]s =
∫
Mn

αg(M) dM

=
∑
z

p(z)
∑

z=∑8
n=1 kn

z!

[
∏8

n=1 kn!]

[ 8∏
n=1

qknn

] ∫
Mn

αK(M , z, {kl}) dM . (85)

The last integral is analytically obtained because of the Gaussian form, so that we reach the
self-consistent equation[

[〈mα〉]s

[〈mα〉2]s

]
=
∑
z

p(z)
∑

z=∑8
n=1 kn

z!

[
∏8

n=1 kn!]

[ 8∏
n=1

qknn

] [ 〈mα〉({0}, {〈v〉})
〈mα〉2({0}, {〈v〉}) + Aα({kl})

]
. (86)

Here

〈m〉({0}, {〈v〉}) =
(

1 +
4

βJ̃ 〈ξ 2〉({0}, {〈v〉})

)
〈ξ〉({0}, {〈v〉}) (87)

〈ξk〉({0}, {〈v〉}) =
∫

dξ ξ−2ξk e−β((ξ,{0},{〈v〉})∫
dξ ξ−2 e−β((ξ,{0},{〈v〉}) (88)
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((ξ, {0}, {〈v〉}) = E0(ξ, 〈θ〉) + z

[
#
(a)
0j (ξ, 〈θ〉, 0) +

σ 2

2
#
(a)
2 (ξ, 〈θ〉, 0)

]

−
∑
α

[
#
(e)
0j (ξ, 〈θ〉, 0) +

σ 2

2
#
(e)
α2 (ξ, 〈θ〉, 0)

](∑
l

kl ν̂lα

)
v̂α

+
∑
(αγ )

[
#
(b)
0jδ(ξ, 〈θ〉, 0) +

σ 2

2
#
(b)
δ2 (ξ, 〈θ〉, 0)

](∑
l

kl ν̂lαν̂lγ

)
v̂αv̂γ

+

[
#
(c)
0j (ξ, 〈θ〉, 0) +

σ 2

2
#
(c)
2 (ξ, 〈θ〉, 0)

](∑
l

kl ν̂lx ν̂ly ν̂lz

)
v̂x v̂y v̂z (89)

Aα({kl}) = Aαα({kl})
2π

= σ 2

z

1

z

8∑
l=1

kl

[( 8∑
i=1

cij
∂〈mα〉({0}, {〈v〉})

∂ui

)2

ν̂l

+ 2σ 2

( 8∑
i=1

cij
∂〈mα〉({0}, {〈v〉})

∂vi

)2

ν̂l

]
(90)( 8∑

i=1

cij
∂〈mα〉
∂ui

)
ν̂l

= ∂〈m〉({0}, {〈v〉})
∂u

+
∑
α

∂〈m〉({0}, {〈v〉})
∂uα

ν̂lαv̂α

+
∑
(αγ )

∂〈m〉({0}, {〈v〉})
∂uαγ

ν̂lαν̂lγ v̂αv̂γ +
∂〈m〉({0}, {〈v〉})

∂uxyz
ν̂lx ν̂ly ν̂lzv̂x v̂y v̂z (91)

( 8∑
i=1

cij
∂〈mα〉
∂vi

)
ν̂l

= ∂〈m〉({0}, {〈v〉})
∂v

+
∑
α

∂〈m〉({0}, {〈v〉})
∂vα

ν̂lαv̂α

+
∑
(αγ )

∂〈m〉({0}, {〈v〉})
∂vαγ

ν̂lαν̂lγ v̂αv̂γ +
∂〈m〉({0}, {〈v〉})

∂vxyz
ν̂lx ν̂ly ν̂lzv̂x v̂y v̂z. (92)

Note that

v̂α ≡ [〈mα〉2]1/2
s

ãα
(93)

and

〈θ〉 = zt2(R0)

[
1 + (2κ + 1)κ

(
σ

R0

)2
]
. (94)

It is desired to simplify further the self-consistent equation (86), since there are
[
∏7

n=1(z + n)]/7! configurations (for example, 50 388 for z = 12) at the rhs of (86). First, we
neglect the interaction term #

(c)
0j in (89), since the typical magnitude of the pair energies are

#
(a)
0j ∼ #

(e)
0j ∼ 10−3 Ry, #(b)

0j ∼ 10−6 Ry, and #(c)
0j ∼ 10−8 Ry. Second, we note that 〈mα〉

and Aαα at the rhs of (86) are the functions of

m̂α =
∑
l

kl ν̂lα (95)

m̂αγ =
∑
l

kl ν̂lαν̂lγ . (96)

The averages of the products among these variables with respect to the polynomial distribution
are given by

〈m̂α〉PD = z
[〈mz〉]s

[〈mz〉2]1/2
s

δαz (97)
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〈m̂αγ 〉PD = 0 (α �= γ ) (98)

〈m̂αm̂γ 〉PD = z(z− 1)
[〈mz〉]2

s

[〈mz〉2]s
δαzδγ z + zδαγ (99)

〈m̂αm̂α′γ ′ 〉PD = z
[〈mz〉]s

[〈mz〉2]1/2
s

(δαxδ(α′γ ′)(zx) + δαyδ(α′γ ′)(yz)) (100)

〈m̂αγ m̂α′γ ′ 〉PD = zδ(αγ )(α′γ ′). (101)

Here 〈 〉PD denotes the average with respect to the polynomial distribution which appears
in (84).

The above relations show that there are only two non-zero correlations among 15 different
pair correlations between the variables {m̂α} and {m̂αγ }. This suggests that one can neglect the
correlations between these variables, so that we adopt the decoupling approximation for each
variable, which is correct up to the second order

〈A({m̂α}, {m̂αγ })〉PD ≈
∑

{να,ναγ }

[∏
α

1

2

(
1 + να

〈m̂α〉PD

〈m̂2
α〉1/2

PD

)][∏
(αγ )

1

2

(
1 + ναγ

〈m̂αγ 〉PD

〈m̂2
αγ 〉1/2

PD

)]

×A({να〈m̂2
α〉1/2

PD }, {ναγ 〈m̂2
αγ 〉1/2

PD }). (102)

Here A is an arbitrary function of {m̂α} and {m̂αγ }. {να} and {ναγ } take the values ±1.
Adopting the approximation (102), one can simplify the self-consistent equations (86) as

follows[
[〈mα〉]s

[〈mα〉2]s

]
=
∑
z

p(z)
1

32

∑
{να,ναγ }

1

2

{
1 + νz

[〈mz〉]s

([〈mz〉]2
s + [(δ〈mz〉)2]s/z)1/2

}

×
[ 〈mα〉({ν})

〈mα〉2({ν}) + Aα({ν})
]
. (103)

The LM 〈mα〉({ν}) in the upper part at the rhs of (103) is given as

〈mα〉({ν}) =
(

1 +
4

βJ̃ 〈ξ 2〉({ν})

)
〈ξα〉({ν}) (104)

〈ξn〉({ν}) =
∫

dξ ξ−2ξn e−β((ξ,{ν})∫
dξ ξ−2 e−β((ξ,{ν}) (105)

((ξ, {ν}) = Ẽ0(ξ) + z#̃(a)(ξ)− √
z[#̃(e)

x (ξ)v̂xνx + #̃(e)
y (ξ)v̂yνy + #̃(e)

z (ξ)v̂zp̂νz]

+
√
z

xyz∑
(αγ )

#̃
(b)
δ (ξ)v̂αv̂γ ναγ . (106)

Here Ẽ0(ξ) stands forE0(ξ, 〈θ〉), and the pair energies #̃(a)(ξ), #̃(e)
α (ξ), and #̃(b)

δ (ξ) are defined
by

#̃(a)(ξ) = #(a)(ξ, 〈θ〉, 0) + 2κ2

(
σ

R0

)2

#̂
(a)
2 (ξ, 〈θ〉, 0) (107)

#̃(e)
α (ξ) = #(e)

α (ξ, 〈θ〉, 0) + 2κ2

(
σ

R0

)2

#̂
(e)
α2 (ξ, 〈θ〉, 0) (108)

#̃
(b)
δ (ξ) = #

(b)
δ (ξ, 〈θ〉, 0) + 2κ2

(
σ

R0

)2

#̂
(b)
δ2 (ξ, 〈θ〉, 0) (109)

and

p̂ =
[

1 + (z− 1)
[〈mz〉]2

s

[〈mz〉2]s

]1/2

(110)
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(
σ

R0

)2

= [(δR)2]s

[R]2
s

. (111)

The fluctuation Aα in the lower part at the rhs of equation (103) is expressed as

Aα = 1

4

[
b(α)({ν}) +

1√
z
b(α)x ({ν})νx +

1√
z
b(α)y ({ν})νy

+
1√
z
b(α)z ({ν})p̂νz +

1√
z

∑
(α′γ ′)

b
(α)
α′γ ′({ν})να′γ ′

]
. (112)

The expressions of b(α), b(α)γ , and b(α)α′γ ′ are given in the appendix.
All the energies in((ξ, {ν}) are the functions of the two kinds of effective media L−1

σ and
Kσ . The former is determined by the CPA equation [24, 25]

1

2

∑
ν

(
1 + ν

[〈ξz〉]s

[〈ξ 2
z 〉]1/2

s

)
Gσ(ω + iδ, ν[〈ξ 2

z 〉]1/2
s , [〈ξ 2

⊥〉]s) = Fσ (113)

Gσ(ω + iδ, ξz, ξ
2
⊥) = δL̄−1

σ + F−1
−σ

(δL̄−1
↑ + F−1

↑ )(δL̄−1
↓ + F−1

↓ )− 1
4 J̃

2ξ 2
⊥
. (114)

Here δL̄−1
σ is defined by (30) in which the charge potential wi has been replaced by

the single-site one, and the site indices have been omitted for simplicity. [〈ξnz 〉]s and
[〈ξ 2〉]s (= [〈ξ 2

⊥〉]s + [〈ξ 2
z 〉]s) are obtained as follows by taking the same steps as those to

obtain (103)[
[〈ξnz 〉]s

[〈ξ 2〉]s

]
=
∑
z

p(z)
1

32

∑
{να,ναγ }

1

2

{
1 + νz

[〈mz〉]s

([〈mz〉]2
s + [(δ〈mz〉)2]s/z)1/2

}[ 〈ξnz 〉({ν})
〈ξ 2〉({ν})

]
.

(115)

The medium Kσ is obtained by applying the interpolation scheme [10] as

([θ ]sKσ )
−1 = δz∗

ab

δz∗
f b

θf

[θ ]s
(θfKf σ )

−1 +
δz∗

f a

δz∗
f b

θb

[θ ]s
(θbKbσ )

−1

+
δz∗

δz∗
f b

[
θf

[θ ]s
(θfKf σ )

−1 − θb

[θ ]s
(θbKbσ )

−1

]

+
!

!a

[
θa

[θ ]s
(θaKaσ )

−1 − δz∗
ab

δz∗
f b

θf

[θ ]s
(θfKf σ )

−1 − δz∗
f a

δz∗
f b

θb

[θ ]s
(θbKbσ )

−1

]
. (116)

[θ ]s = δz∗
ab

δz∗
f b

θf +
δz∗

f a

δz∗
f b

θb +
δz∗

δz∗
f b

(θf − θb) +
!

!a

(
θa − δz∗

ab

δz∗
f b

θf − δz∗
f a

δz∗
f b

θb

)
. (117)

Here the subscripts a, b and f denote the amorphous structure, the bcc structure, and the fcc
structure as the reference systems. The differences in coordination numbers are defined by
δz∗ = z∗ − z∗

a and δz∗
ab = z∗

a − z∗
b, for example. θc (c = a, b, f ) are obtained from the DOS

in non-interacting systems ρc(ε) as

θc =
∫
(ε − εc)

2ρc(ε) dε. (118)

The medium of the reference system Kcσ are given by

θcKcσ = L−1
σ − F−1

cσ (119)
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Figure 1. The magnetization M = [〈mz〉]s (thick full curves) and the spin glass order parameter
[〈m〉2]1/2

s (thin full curve and dotted curve) at 25 K as a function of the d-electron number N ,
which are calculated for σ/R0 = 0.067 and 0.075. The average coordination number is fixed to
be z∗ = 11.5. The open squares and circles are [〈mz〉]s and [〈m〉2]1/2

s obtained by the previous
theory [18] with use of the Monte Carlo sampling technique at 35 K andσ/R0 = 0.067, respectively.

for c = b and f , and

θaKaσ = 2FaσL−1
σ − 1 ±√

1 + 4{[(δθa)2]s/[θa]2
s }FaσL−1

σ (FaσL−1
σ − 1)

2(1 − {[(δθa)2]s/[θa]2
s })Faσ

. (120)

The sign of Kaσ should be chosen to be Im Kaσ < 0.
The coherent Green functions Fcσ (c = a, b, f ) in (119) and (120) are defined by (37) in

which [ρ(ε)]s has been replaced by ρc(ε). Moreover, the fluctuation [(δθa)2]s/[θa]2
s is obtained

from the relation

[(δθa)2]s

[θa]2
s

= ([z∗
a] + 1 − z∗

a)(z
∗
a − [z∗

a])

z∗2
+

4κ2[1 + 1
2 (2κ + 1)2(σa/R0)

2]

z∗[1 + κ(2κ + 1)(σa/R0)2]

(
σa

R0

)2

(121)

where (σa/R0)
2 is given by (111).

Equations (103), (113), and (116) determine self-consistently [〈mz〉]s, [〈mz〉2]s, [〈mx〉2]s,
[〈my〉2]s and the effective media L−1

σ and Kσ . Note that the number of effective configurations
in (103) has been reduced from 104 to 64, so that the numerical calculations have been much
simplified as compared with the previous theory.

3. Numerical results

We have performed the numerical calculations for amorphous transition metals to examine the
overall features of the present theory. We adopted the input DOS ρa(ε)s and ρb(ε)s calculated
by Fujiwara [26], ρf (ε)s calculated by Moruzzi et al [27], and the effective exchange energy
parameter J̃ = 0.059 Ry, all of which have been used in our previous calculations [6, 10, 18].
We verified that the computing time to solve the self-consistent equations is only one-tenth of
the previous scheme based on the Monte Carlo sampling method.

Figure 1 shows the magnetic moments as a function of the d-electron numberN calculated
at z∗ = 11.5 and T = 25 K. In the case of σ/R0 = 0.067, the ferromagnetism (F) is realized
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Figure 2. Non-interacting densities of states (DOS) forN = 7.3. The solid curve: σ/R0 = 0.075,
dot-dashed curve: 0.067. The vertical dashed line shows the Fermi level.

in the region N > 7.4, and the transition from the ferromagnetism to the non-collinear spin
glass occurs at N = 7.4; the magnetization [〈mz〉]s suddenly drops there with decreasing the
d-electron number N , but the spin glass order parameter [〈m〉2]1/2

s remains below N = 7.4.
This feature is consistent with the previous results obtained by the Monte Carlo sampling and
the decoupling approximation to the distribution for the transfer integrals, as shown by circles
and open squares.

The SG state in the present theory disappears aroundN = 6.95 for σ/R0 = 0.067 at 25 K,
while it remains in the previous method. This is because the decoupling approximation to the
distribution of the transfer integrals, which was used in the previous theory, overestimates the
fluctuations of the interatomic distance and therefore those of the magnetic couplings, so that
the approximation enhances the SG order in the critical region where the average magnetic
couplings almost disappear. The difference, however, is of the quantitative problem, since we
found that the SG order persists at 20 K even around N = 6.95 in the present theory.

When we adopt larger fluctuation σ/R0 = 0.075, the ferromagnetic region for σ/R0 =
0.075 is extended to the region of smaller N as shown in figure 1. This is simply explained by
the enhancement of the DOS at the Fermi level due to the increasing structural disorder (see
figure 2). The SG order remains near N = 6.95 even at 25 K as shown on figure 1, so that
the SG order parameter [〈m〉2]1/2

s shows the behaviour similar to the results obtained by the
previous theory.

The previous theory with use of the Monte Carlo sampling yields the second-order
transition from the F to the SG at least above 30 K as a function ofN . The present result shows
the first-order transition and the metastable ferromagnetic state near the boundary, which is
often found in the crystalline close-packed systems [28] such as γ -Fe. It is possible that the
crystalline feature still remains at the transition point for a small value of σ/R0. Although the
present theory is valid in the limit of small σ/R0, it is difficult at the present stage to conclude
whether or not the first-order transition persists for a larger strength of σ/R0.

It should be noted that the nature of the transition at the F–SG boundary seems to be
sensitive to the approximation. For example, we made a decoupling approximation (102).
This neglects the fluctuations 〈m̂xm̂zx〉PD − 〈m̂x〉PD〈m̂zx〉PD = zûz and 〈m̂ym̂yz〉PD −
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Figure 3. The magnetization M (thick full curve), the spin glass order parameter [〈m〉2]1/2
s (thin

full curve), and its x component [〈mx〉2]1/2
s (broken curve) for σ/R0 = 0.067, z∗ = 11.5, and

25 K, which are calculated with use of the modified decoupling approximation.

〈m̂y〉PD〈m̂yz〉PD = zûz, ûz being defined by [〈mz〉]s/[〈mz〉2]1/2
s . If we adopt the decoupling

approximation to the new variables m̃x = (m̂x + m̂zx)/
√

2, m̃y = (m̂y + m̂yz)/
√

2, m̃z = m̂z,
m̃yz = (m̂y − m̂yz)/

√
2, m̃zx = (m̂x − m̂zx)/

√
2, and m̃xy = m̂xy , this problem is removed

since 〈m̃αm̃γ 〉PD = 〈m̃2
α〉PDδαγ , 〈m̃αm̃α′γ ′ 〉PD = 0, and 〈m̃αγ m̃α′γ ′ 〉PD = 〈m̃2

αγ 〉PDδ(αγ )(α′γ ′) are
satisfied. The resulting self-consistent equations (103) remain unchanged, but {να} in (106) are
replaced by ν̃x = (

√
1 + ûzνx +

√
1 − ûzνzx)/

√
2, ν̃y = (

√
1 + ûzνy +

√
1 − ûzνyz)/

√
2, ν̃z =

νz, ν̃yz = (
√

1 + ûzνy −
√

1 − ûzνyz)/
√

2, ν̃zx = (
√

1 + ûzνx −
√

1 − ûzνzx)/
√

2, and ν̃xy =
νxy . The magnetic moments against N curves calculated with use of the modified decoupling
approximation are presented in figure 3. The non-collinear ferromagnetic state appears between
N = 7.35 and N = 7.40 near the boundary, though the other features hardly change.

We have also examined the temperature dependence of the magnetization and the SG
order parameter as shown in figure 4. The latter monotonically decreases with increasing
temperature, and shows the second-order transition to the paramagnetic state. The SG
temperature Tg is increased when σ/R0 is increased since the fluctuations of the interatomic
distance increase those of the magnetic couplings, therefore Tg.

The magnetization for N = 7.6 and σ/R0 = 0.067 rapidly decreases near the Curie
temperature TC, showing a behaviour similar to the first-order transition as often found in
the crystalline counterparts with the same d-electron number. When we increase σ/R0, we
obtain higher TC and the Brillouin-like curve leading to the second-order transition as shown
in figure 3. Both TC and Tg in the present scheme qualitatively agree with those obtained by
the Monte Carlo sampling (see the broken curves in figure 4).

The calculated TC and Tg are presented in figure 5 as a function of d-electron number. The
Curie temperature monotonically decreases with decreasing the d electron number for both
σ/R0 = 0.067 and 0.075, and shows an instability leading to the SG. The spin glass temperature
shows a minimum as a function of N around N = 6.9, where the average NN magnetic
interactions change the sign. It should be noted that TC and Tg in the present calculations
are underestimated by a factor of two due to the classical treatment of spin fluctuations. The
quantum treatment would enhance TC and Tg by a factor of two, and the magnetic short-
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Figure 4. The temperature dependence of the magnetization [〈mz〉]s and the SG order parameter
[〈m〉2]1/2

s for N = 7.6 and 7.2, respectively. Chain curves: σ/R0 = 0.067, the full curves:
σ/R0 = 0.075. The broken curves represent the temperature dependence of [〈mz〉]s and [〈m〉2]1/2

s
obtained by the Monte Carlo sampling method [18].

Figure 5. The Curie temperatures and the SG temperatures as a function of the d-electron number
N for σ/R0 = 0.067 and 0.075. F, SG and P denote the ferromagnetic state, the spin-glass state, and
the paramagnetic one, respectively. The broken curves show the upper limit of the ferromagnetic
state.

range order effects (i.e. the long-range spin fluctuations) can reduce them further. The phase
boundary between F and SG cannot be determined by the present theory since the first-order
phase transition takes place at the boundary. For the determination one needs the explicit
expression of free energy, which is left for future work.

The d-electron number dependence of TC and Tg shown in figure 5 seems to be consistent
with the recent experimental data by Ohta et al [29]. They obtained the magnetic phase diagram
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Figure 6. Experimental phase diagram for Y20(Mn1−xFex)80 quasi-binary amorphous alloys
obtained by Ohta et al [29]. The Fe concentration x is regarded as a parameter controlling the
d-electron number N .

of Y20(Mn1−xFex)80 quasi-binary amorphous alloys to investigate the average electron number
dependence of the phase diagram. The ferromagnetism is stabilized in Y20Fe80 alloys due to
the atomic size effects [30]. The Fe concentration may be regarded as a parameter changing the
average d-electron number. With decreasing Fe concentration, the Curie temperature rapidly
decreases, and the SG state is stabilized. The SG temperature show a minimum at x = 0.5.
This feature is consistent with our phase diagram given in figure 5, although the re-entrant
behaviour around x = 0.9 is not explained by the present theory.

4. Summary

We have presented a simplified theory of non-collinear magnetism in amorphous transition
metals. The theory is based on the functional integral technique describing the thermal spin
fluctuations and the distribution function method dealing with the random LMs due to structural
disorder. The distribution of LMs is given by the 4z-fold integral equation. Adopting the
Gaussian model to the distribution for the interatomic distance and making use of the saddle-
point approximation, we performed analytically the z-fold integrals of the kernel in the integral
equations, so that we derived the simplified equations for the magnetization and the SG order
parameters with only 64 configurations of the surrounding effective spins. This enabled us
to calculate the magnetic moments without introducing statistical errors, and to reduce the
computing time by a factor of ten.

Solving the self-consistent equations for amorphous transition metals, we have
demonstrated that the theory describes the transition from the ferromagnetism to the SG with
decreasing the d-electron number and verified that the theory leads to qualitatively the same
TC and Tg against N curves as in the previous theory based on the Monte Carlo sampling
method. The N dependence of TC and Tg is consistent with the recent experimental data for
Y20(Mn1−xFex)80 quasi-binary amorphous alloys.

The behaviour near the boundary between F and SG is sensitive to the approximation.
The present theory causes the first-order F–SG transition or the first-order transition
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from the high-spin F to the low-spin non-collinear F state, while the previous theory
leads to the second-order transition from the non-collinear F to the SG at least above
30 K. The former should be valid for small σ/R0, and the latter may be reasonable
for larger values of σ/R0. The details of the phase diagram near the F–SG boundary
and the description of the reentrant SG behaviour in metallic systems are left for future
theoretical investigations. Furthermore, it is possible that the well-defined long-range
non-collinear magnetic orders such as the helical structure develop in the small σ/R0

region. The present theory does not distinguish such ordered states from the SG. For their
description, one has to extend the theory introducing a site-dependent effective medium
which is off-diagonal in the spin space and a site-dependent distribution function. Apart
from these difficulties, the present theory is useful for a qualitative or semi-quantitative
understanding of the non-collinear magnetism of amorphous metals and allow us to treat
more complex systems which cannot be analysed by the previous theory. The application to
amorphous rare-earth transition metal alloys is one of the possible works left in the future
investigations.

Appendix. Expressions of b(α), b(α)
γ , and b(α)

α′γ′

We derive here the expressions of b(α), b(α)γ , and b(α)α′γ ′ in equation (112).
Substituting (91) and (92) into (90), and expanding the squares of them, we obtain

Aα = 1

4z

[
zb(α) +

∑
α′
b
(α)
α′
∑
l

kl ν̂lα′ +
∑
(α′γ ′)

b
(α)
α′γ ′

∑
l

kl ν̂lα′ ν̂lγ ′

]
. (A1)

Here

b(α) = 4σ 2

z
(b(α1) + 2σ 2b(α2)) (A2)

b
(α)
α′ = 4σ 2

z
(b

(α1)
α′ + 2σ 2b

(α2)
α′ ) (A3)

b
(α)
α′γ ′ = 4σ 2

z
(b

(α1)
α′γ ′ + 2σ 2b

(α2)
α′γ ′ ) (A4)

b(α1) =
(
∂〈mα〉
∂u

)2

+
∑
α′

(
∂〈mα〉
∂ũα′

)2

+
∑
(α′γ ′)

(
∂〈mα〉
∂ũα′γ ′

)2

(A5)

b(α1)
x = 2

(
∂〈mα〉
∂u

∂〈mα〉
∂ũx

+
∂〈mα〉
∂ũy

∂〈mα〉
∂ũxy

+
∂〈mα〉
∂ũz

∂〈mα〉
∂ũzx

)
(A6)

b(α1)
y = 2

(
∂〈mα〉
∂u

∂〈mα〉
∂ũy

+
∂〈mα〉
∂ũz

∂〈mα〉
∂ũyz

+
∂〈mα〉
∂ũx

∂〈mα〉
∂ũxy

)
(A7)

b(α1)
z = 2

(
∂〈mα〉
∂u

∂〈mα〉
∂ũz

+
∂〈mα〉
∂ũx

∂〈mα〉
∂ũzx

+
∂〈mα〉
∂ũy

∂〈mα〉
∂ũyz

)
(A8)

b(α1)
yz = 2

(
∂〈mα〉
∂u

∂〈mα〉
∂ũyz

+
∂〈mα〉
∂ũy

∂〈mα〉
∂ũz

+
∂〈mα〉
∂ũxy

∂〈mα〉
∂ũzx

)
(A9)

b(α1)
zx = 2

(
∂〈mα〉
∂u

∂〈mα〉
∂ũzx

+
∂〈mα〉
∂ũz

∂〈mα〉
∂ũx

+
∂〈mα〉
∂ũyz

∂〈mα〉
∂ũxy

)
(A10)

b(α1)
xy = 2

(
∂〈mα〉
∂u

∂〈mα〉
∂ũxy

+
∂〈mα〉
∂ũx

∂〈mα〉
∂ũy

+
∂〈mα〉
∂ũzx

∂〈mα〉
∂ũyz

)
. (A11)
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The variables ũα and ũαγ are defined by ũα = uα/v̂α and ũαγ = uαγ /v̂αv̂γ , respectively. b(α2),
b(α2)
x , b(α2)

y , b(α2)
z , b(α2)

yz , b(α2)
zx and b(α2)

xy are defined by (A5)–(A11) in which u has been replaced
by v.

When we adopt the decoupling approximation (102), (A1) reduces to

Aα({ν}) = 1

4z

[
zb(α) +

√
zb(α)x νx +

√
zb(α)y νy +

√
zb(α)z p̂νz +

√
z
∑
(α′γ ′)

b
(α)
α′γ ′να′γ ′

]
(A12)

which is identical to (112).
The derivatives of local moments in (A5)–(A11) often make the self-consistent

equation (103) unstable due to their nonlinearity. We therefore replace them with the finite
differences in the fluctuation range:

∂〈mα〉
∂ui

= δ〈mα〉ui
2〈(δui)2〉1/2

≡ 〈mα〉(〈ui〉 + 〈(δui)2〉1/2)− 〈mα〉(〈ui〉 − 〈(δui)2〉1/2)

2〈(δui)2〉1/2
(A13)

∂〈mα〉
∂vi

= δ〈mα〉vi
2〈(δvi)2〉1/2

≡ 〈mα〉(〈vi〉 + 〈(δvi)2〉1/2)− 〈mα〉(〈vi〉 − 〈(δvi)2〉1/2)

2〈(δvi)2〉1/2
. (A14)

Here 〈mα〉(〈ui〉 ± 〈(δui)2〉1/2) denotes the LM at u1 = 〈u1〉, . . . , ui = 〈ui〉 +
〈(δui)2〉1/2, . . . , u8 = 〈u8〉, and v1 = 〈v1〉, . . . , v8 = 〈v8〉, 〈 〉 being the average over {Rj }
given by

〈· · ·〉 ≡
∫
(· · ·)

[ z∏
j=1

ps(Rj ) dRj

]
. (A15)

Substituting (A13) and (A14) into (A2)–(A11), we obtain

b(α) = b̂(α1) + b̂(α2) (A16)

b
(α)
α′ = b̂

(α1)
α′ + b̂(α2)

α′ (A17)

b
(α)
α′γ ′ = b̂

(α1)
α′γ ′ + b̂(α2)

α′γ ′ (A18)

b̂(α1) = (δ〈mα〉u)2 +
∑
α′
(δ〈mα〉uα′ )

2 +
∑
(α′γ ′)

(δ〈mα〉uα′γ ′ )
2 (A19)

b̂(α1)
x = 2(δ〈mα〉uδ〈mα〉ux + δ〈mα〉uy δ〈mα〉uxy + δ〈mα〉uzδ〈mα〉uzx ) (A20)

b̂(α1)
y = 2(δ〈mα〉uδ〈mα〉uy + δ〈mα〉uzδ〈mα〉uyz + δ〈mα〉ux δ〈mα〉uxy ) (A21)

b̂(α1)
z = 2(δ〈mα〉uδ〈mα〉uz + δ〈mα〉ux δ〈mα〉uzx + δ〈mα〉uy δ〈mα〉uyz ) (A22)

b̂(α1)
yz = 2(δ〈mα〉uδ〈mα〉uyz + δ〈mα〉uy δ〈mα〉uz + δ〈mα〉uxy δ〈mα〉uzx ) (A23)

b̂(α1)
zx = 2(δ〈mα〉uδ〈mα〉uzx + δ〈mα〉uzδ〈mα〉ux + δ〈mα〉uyzδ〈mα〉uxy ) (A24)

b̂(α1)
xy = 2(δ〈mα〉uδ〈mα〉uxy + δ〈mα〉ux δ〈mα〉uy + δ〈mα〉uzx δ〈mα〉uyz ). (A25)

Here we used the relations

〈(δu)2〉1/2 = σ√
z

(A26)

〈(δuα)2〉1/2 = v̂α
σ√
z

(A27)
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〈(δuαγ )2〉1/2 = v̂αv̂γ
σ√
z

(A28)

〈(δvi)2〉1/2 =
√

2σ 〈(δui)2〉1/2. (A29)

The expressions of b̂(α2), {b̂(α2)
γ }, and {b̂(α2)

α′γ ′ } are also given by (A19)–(A25) in which subscript
u has been replaced by v.
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